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This paper presents a numerical simulation of capillary jets motivated by the study of drop- 
on-demand ink-jet printing. Two sets of l-dimensional equations for an inviscid axisymmetric 
fluid jet are integrated using a numerical scheme suggested by MacCormack’s predictor- 
corrector algorithm. The difference between the two sets of equations is the inclusion or 
exclusion of the terms that account for radial inertia. When these terms are included the 
numerical scheme necessary to solve the equations is more complicated. The results from both 
schemes are presented for three Weber numbers with a simplitied nozzle entry pressure history 
that has been converted to a velocity history at the nozzle exit by a momentum integral 
applied to the nozzle region. The results indicate that at higher Weber numbers the omission 
of radial inertia has a greater effect on the drop profiles than at lower Weber numbers. The 
conditions under which each numerical scheme might be a useful simulation are also dis- 
cussed. cc’ I986 Academic Press, Inc. 

I. INTRODUCTION 

The purpose of this study is to develop a numerical simulator for single drop for- 
mation and ejection based on l-dimensional theories of capillary jets. The 
application of interest here is in drop-on-demand (DOD) ink-jet printing, but such 
a numerical solution may also be useful in other processes requiring single drop for- 
mation, such as atomization and combustion studies. 

The DOD ink jet studied in Bogy and Talke [I], consists of a glass capillary 
tube surrounded by a radially polarized piezoelectric crystal and capped with a flat 
plate containing a small hole (nozzle) of approximately 50.0 micrometers diameter. 
The nozzle opening is about two orders of magnitude smaller than the main fluid 
&amber diameter. The other end of the tube is connected to a fluid (ink) reservoir 
that is at ambient pressure. An applied rectangular electrica pulse first expands? 
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then contracts, the tube producing acoustical pressure waves in the fluid inside the 
tube. By adjusting the electrical pulse length, the contraction can be timed to rein- 
force the reflections of the expansion wave from the open end of the tube such that 
constructive interference effectively produces a double amplitude pressure wave at 
the nozzle. This wave then interacts with the meniscus at the nozzle opening to eject 
a drop. 

If the frequency of the driving pulses is sufficently high, the fluid meniscus at the 
nozzle may not settle down to its equilibrium position before another pressure pulse 
reaches the nozzle. This disruption of the static initial conditions for drop formation 
can place a limit on the frequency at which the device can operate and causes the 
drop formation to depend on the previous history of the meniscus. Since our 
l-dimensional model cannot treat the flow in the nozzle region, we cannot predict 
this aspect of drop formation and will therefore restrict our study to the formation 
of a single drop. 

A numerical simulator based on the 3-dimensional, axisymmetric Navier-Stokes 
equations of fluid dynamics was presented by Fromm l-21. Given a pressure and 
velocity history at the nozzle, Fromm was able to calculate the time evolution of a 
drop as it grows and detaches from the nozzle and transforms from a teardrop 
shape with a connecting tail to a sphere with a constant velocity. The main draw- 
back of Fromm’s approach to the problem is the large amount of computer time 
required for the calculation. 

A numerical solution of the problem based on a simple l-dimensional theory, 
with neglects radial inertia, was recently presented by Adams and Roy [3]. They 
used MacCormack’s predictor-corrector algorithm with a Lagrangian formulation 
and obtained numerical results which could be compared with Fromm’s [2]. Some 
differences were observed; their drops detach from the nozzle earlier and have a 
faster final velocity than those calculated by Fromm. 

The i-dimensional equations used in Ref. [3] are the same as those used by Lee 
[4] (except for the addition of a viscous term) and it has been shown in Bogy [5], 
that the lack of radial inertia in these l-dimensional equations can result in an 
inaccurate description of the break-up of continous jets. On physical grounds one 
might expect radial inertia to play an even larger role in the single drop formation 
problem of interest here. 

In this paper we present a numerical solution of the same problem considered in 
[2, 31, but here we use the l-dimensional Cosserat equations for an axisymmetric 
jet presented in Green [6]. These equations include radial inertia, and we restrict 
our calculations to the inviscid case. We employ an Eulerian formulation with a 
predictorcorrector scheme suggested by MacCormack’s algorithm. 

In Section II we recall the equations from Ref. [6] and indicate the nondimen- 
sionahzation. We also formulate the problem to be solved and contrast the results 
expected from a l-dimensional theory with those obtained from the 3-dimensional 
theory used in Ref. [2]. 

In Section III we explain the numerical scheme devised for solving the l-dimen- 
sional equations with radial inertia. Then we present in Section IV a parallel, but 
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much simplified, scheme based on the Eulerian formulation for solving the 
equations used in Ref. [3]. In Section V the nozzle region calculation needed to 
obtain a nozzle exit velocity boundary condition for the jet from a nozzle extrance 
pressure history is explained. This nozzle pressure history is generated inside the 
transducer section in a manner that is described in Bogy and Talke [l]. In a sub- 
sequent publication we plan to couple a transducer nozzle pressure calculation with 
the drop ejection solution presented here to obtain a complete DOD ink-jet printer 
simulation. 

In Section VI we present the numerical drop formation and detachment results 
for various values of the Weber number. A comparison is made between the results 
predicted by the l-dimensional equations with radial inertia and those without 
radial inertia. Also we compare our results for the latter, which are obtained using 
an Eulerian formulation, with those obtained in Ref. [3]. where the Lagrangian 
formulation is employed. 

Finally, in Section VII, we present a discussion of the results and some con 
elusions. 

II. ONE-DIMENSIONAL JET EQUATIONS WITH RADIAL INERTIA 

The equations governing the free surface flow of an axisymmetric liquid jet were 
presented in Green [6], using a l-dimensional theory. They involve four dependent 
variables the radius of the jet, r, the axial velocity, LJ, the radial (or director) 
velocity, U, and the pressure, q. The variable q has the units of force in this spatially 
reduced theory but it plays the role of the pressure in the equations and will be 
referred to as the pressure for simplicity. These variables are functions of time. :? 
and axial position, Z. The fluid is assumed to be incompressible and to possess con 
stant viscosity and surface tension. The parameters that characterize the flow are 
the Weber number, W, and the Reynolds number, E. The Weber number is the 
ratio of inertial to surface tension effects and is approximately unity for the fluids 
and geometries of interest here. The Reynolds number is the ratio of inertiai to 
viscous forces and it will be set equal to inlinity, i.e.? we will consider only the 
inviscid case. The dimensionless variables, indicated by an asterisk, are detined as 
follows 

-*=za A /> >F r* = i-la t* = v()i,la 

v* = v/v(J, u* = au/V0 

q* = q/(rcp P$a2) 
f2.j) 

The constants a, p, and Tare the nozzle radius, the density and the surface tension 
respectively. The viscosity is p, which is set equal to zero for inviscid calculations 
V. is a reference velocity which can be chosen as the capillary wave speed or some 
other characteristic velocity of the process. The asterisks will henceforth be dropped 
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from all the variables, with the understanding that they are dimensionless as defmed 
in Eq. (2.1). 

The equations given in Ref. [6] are the continuity equation, 

rt = ru - vr i-9 

the incompressibility constraint, 

11: -k 2u= 0, 

conservation of momentum in the axial direction, 

(2.2) 

(2.3) 

(2.4) 

and conservation of radial (director) momentum, 

where a subscript t or z on any of the dependent variables denotes partial differen- 
tiation. Equations (2.2)-(2.5) will be referred to as Set (I) for simplicity in the 
sequel. 

Set (I) contains four equations in four dependent variables, but it is possible to 
reduce it to two equations in two dependent variables. The variables u and q can be 
eliminated from Set (I) by differentiating Eq. (2.5) with respect to z and solving it 
for qz. This result can then be used to remove q= from Eq. (2.4). and then Eq. (2.3) 
can be used to eliminate u in terms of U, thereby reducing Eqs. (2.2) and (2.4) to 
equations for r and 0 only. The result of this process is given in Bogy, Shine? and 
Talke [7]. We list these equations here and refer to them as Set (II): 

2r, + 2r.v + rv- = 0, (2.6) 

vc + vu= - rrz(2vzr + 2vv=: - v!)/4 - r2(vzzt + vv==-)/8 =X+ Y (2.7 1 

where 

(2.8j 

An examination of the derivation of Set (II) reveals that the mixed space and 
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time derivatives of 0 in Eq. (2.7) are due to the terms on the left hand side of Eq. 
(2.5), i.e., the radia1 inertia terms. Since mixed space-time derivatives cause dif- 
ficulties in numerical schemes, it is desirable to avoid them. IIowever, simply 
omitting these terms would be equivalent to neglecting radial inertia. The equation 
obtamed from Eq. (2.7) by omitting radial inertia is 

v[+vv~=x+ Y, (2.9 1 

where X and Y are given in (2.8). Equations (2.6), (2.8) along with (2.9) will be 
called Set (III). The evolution equation for the radius is the same in Sets (II) and 
(III). Set (III) would also be obtained by setting the left-hand side of Eq. (2.5) to 
zero and repeating the derivation of Set (II). 

There are some advantages and some disadvantages associated with each of the 
three sets of equations when they are used to model single drop formation and ejec- 
tion Set (III) is clearly the simplest set of equations. IIowever, since radial inertia is 
not included, they are not expected to predict the drop formation very accurately~ 
Sets (I) and (II) are analytically equivalent, but, the mixed derivatives in Set (II) 
require an implicit numerical scheme such as used by Bogy, Shine, and Talke [7]. 
Set (I j, on the other hand, does not contain the mixed derivatives, but involves two 
more dependent variables and the corresponding equations, thus increasing the 
complexity of the scheme. Another problem with Set (I) is the absence of an 
evolution equation for q. Therefore some independent method is needed to deter- 
mine q such that the time independent equation (2.2) is satisfied. 

All three sets of equations are l-dimensional (in space), and thus cannot model 
certain types of behavior. Since the radius is a function of Z, this formulation cannot 
describe a situation of two radius values at one axial position. Thus the flow in the 
nozzle region cannot be predicted when the meniscus is being pulled back into the 
nozzle. Three-dimensional approaches such as Fromm’s [2], on the other hand, 
can represent this behavior and his results showed that this can occur. The boun- 
dary conditions at the ends of the drop must also be modified to account for the 
lack of variations in the radial direction. Green [6], gives a uniqueness proof in 
which only the velocities or the pressures can be specified at the ends of the jet and 
the radius is not specified. Fromm’s results show, and experiments reveai> that the 
imposed boundary conditions at the exit of the nozzle must allow the jet to con- 
tract. The fluid surface attached to the circumference of the nozzle exit does not 
always extend outward from the nozzle, but sometimes curves back into the nozzle 
allowing the jet to have a smaller radius than the nozzle when it emerges. Since our 
calculations do not include the flow in the nozzle cavity, the boundary conditions 
used must be flexible enough to permit the radial contraction at the nozzle. 

III. WJMERICAL SOLUTION OF SET (I): SCHEME A 

In order to include radial inertia effects in our calculations we first consider the 
equations of Set (I). The form presented in Eqs. (2.2)-(2.~) will be used, thus our 



332 SHIELD, BOGY, AND TALKE 

numerical scheme will employ the Eulerian formulation. This simplifies the com- 
puter code, as compared to the Lagrangian formulation used by Adams and Roy 
[3], since variable space steps will not be needed. The positions detining the begin- 
ning and the end of the drop are determined by a numerical integration of the 
corresponding velocities. This integration has the same order of accuracy as the 
time derivatives in the evolution equations. The scheme used was motivated by a 
Lax-Wendroff predictorcorrector algorithm that uses upwind derivative formulas 
for the predictor and downwind for the corrector (see Roache [8]). The scheme as 
given in Roache requires that the equations be of an exact differential form, which 
is not the case for Set (I). We will use the basic idea of the predictorcorrector, in 
which the two stages use different directions in the finite differences, to guide our 
development of the algorithm given below. 

The first step is to eliminate the singularities in the equations that result when the 
radius becomes zero. Examination of Set (I) shows that the surface tension terms 
(preceded by l/w) are multiplied by negative powers of r when the equations are 
solved for the time derivatives. This causes problems at the ends of the drop where 
the radius becomes zero, and since the surface tension terms are expected to 
dominate, this is not desirable. Thus we change variables to new dependent 
variables ~1’ and U’ given by 

v’ = A, d = r4u. (3.1) 

The new axial variable v’ is the volume velocity. Substituting these relations into 
Set (I) we obtain the following set of equations, Set (I’): 

rL = d/r3 - r=v’/r’, (3.2) 

(r2v’): + 224’ = 0, (3.3) 

v; = -qz + h(z), (3.4) 

u; = 4q + Du( z), (3.5j 

where, for simplicity in later derivations, we have introduced the functions Dv(z) 
and Du(z) on the right-hand side of the velocity evolution equations. They are 
delined by 

and 

Du(zj =-I! L 
r r2rzz 

W (l+rf)“2e(l+r~)3” I 

v’u; 3(zl’)Z 
--y-+-. 

r- r4 

(3.6) 

(3.7) 

Since we are considering only the inviscid case, the viscous terms of Set (I) do not 
appear in Eqs. (3.6) and (3.7). 
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Three of the four equations in Set (I’) (all but Eq. (3.3)) have the form 

Bt=F[z, t, l3, B =,... 1, f3.8) 

where (...) refers to spatial derivatives of higher order than the first but uo time 
derivatives, and B stands for any of r, u’, or 24’. We can use a finite difference form 
of Eq. (3.8) in time to find the value of the dependent variables at time l+ & as 

B(t+dr)=B(r)+dt F[z> t? l33 B:(t)*...]. (3.9) 

To implement the predictor-corrector scheme3 we need to evaluate F (the right- 
hand side of Eq. (3.8)) using upstream and downstream differences in the space 
derivatives. We denote the upstream and downstream differences of F as F+ and 
F -, respectively. Then we have 

B(t+dt)=B(t)+ (dt/2){F+[z, t, B, Bz(t),...] 

+F-[z, t, (B(r)+dtF+[z, I?& Bz(t)...])3.,.]j (3.10) 

as our predicted and corrected value of B at t + dt. This equation is used at every 
node. z= i dz (i= 1 to N), to give the value of B(l+ dt) at all values of 2. In the 
actual computation this scheme is carried out by using two passes of the form in 
Eq. (3.9) and then combining the results with Eq. (3.10). 

The spatial gradients in Eqs. (3.2)-(3.7) are calculated using the standard finite 
difference formulas, 

B== [Btzl)-B(z, -dz)]/dz, (3.11) 

Bzz = [Hz + dz) - 2B(z) + B(z - dz)],‘dz’. (3.12) 

where zr is either z or 2 + dz to make Eq. (3.1 I ) an upwind or downwind derivative 
as necessary. 

Set (I’) still involves the pressure, q, that must be calculated so that the 
remains incompressible. Since we do not have an evolution equation for q, we next 
derive an equation to determine it by requiring that the increments calculated using 
Eqs. (3.4) and (3.5) are incompressible. To do this we differentiate Eq. (3.3) with 
respect to time and then use Eqs. (3.1) (3.4). and (3.5) to eliminate the time 
derivatives from the result, obtaining 

This is an ordinary differential equation in z for q that only involves the values of r, 
u’, and u’ at the current time step. Equations of this form can be solved with an 
implicit method such as that given in Smith [9]. This means that a matrix equation 
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derived from Eq. (3.13) must be solved at every time step. However, since we use 
the 3-point formulas in Eqs. (3.11) and (3.12) for the derivatives of q in Eq. (3.13) 
the matrix equation will be tri-diagonal. Tri-diagonal systems can be solved without 
pivoting and with no increase in bandwidth, with a speed proportional to the size 
of the matrix. To reduce storage, only the non-zero elements in the array are stored, 
using only 4N words for the whole system (including the right-hand side and 
solution vector j. 

To ensure that the flow remains incompressible over many time steps, Eq. (3.3) is 
used to calculate the radial velocity from the axial velocity at each time step. For 
the most accurate evaluation of U’ a 5-point derivative formula is used to evaluate 
vi in Eq. (3.3 j as 

v;z [v’(i-2)/12-2v’(i- 1)/3+2a’(i+ 1)/3-0’(2.+2)/12]/& (3.14) 

Here the index z’ refers to the position in space, z = i LIZ. This means the increment 
for U’ calculated with Eq. (3.5) will not be used for updating the value of u’. 
However, it should be noted that these terms are in the right-hand side of Eq. (3.13) 
and hence still contribute to the solution for D’ through q. This procedure is 
necessary since otherwise the small errors in the increments can add up over many 
time steps and cause incompressibility to be violated. 

To complete our numerical scheme we must give the boundary and initial con- 
ditions that supplement the above equations. The boundary conditions used at the 
nozzle in the first stage of the calculation are a prescribed axial velocity and zero 
radial velocity. The end radius is initially set equal to one, i.e., the nozzle radius, 
and it is not allowed to increase above this value. However, if the radius value 
calculated at the lirst node point becomes less than one, the zero radial velocity 
boundary condition is changed to rZ = 0 at the nozzle and the end radius is allowed 
to shrink away from the nozzle. This is consistent with other considerations as dis- 
cussed above. At the nozzle we also require that the pressure gradient is zero. At the 
free end of the drop the boundary conditions required are less clear. Since the 
pressure on the outside of the drop is zero (ambient), the pressure just inside the 
front end of the drop must be due to surface tension alone. However, q is actually 
the resultant force of the pressure acting over the area of radius r (the factor of rt is 
included in the nondimensionalization). Since the radius is actually zero at the end 
of the drop this condition is the same as setting q = 0 at the end of the drop. These 
boundary conditions also satisfy the requirements for the existence of a unique 
solution of Eq. (3.13). At the end of the drop the axial velocity is required to have 
zero gradient, making the radial velocity zero as well, which is consistent with the 
radius being zero and with the symmetry of the drop. However, the radius at the 
end node cannot simply be set equal to zero since the equations would then become 
singular at that point. Therefore we merely assume that the drop shape is axisym- 
metric at the front of the drop for the surface tension calculations. 

After drop break off, which occurs when the radius becomes smaller than a space 
step, the boundary conditions at the trailing end of the drop become the same as 



FLUID JET MODELS APPLIED TO PIWJTING 335 

those at the leading edge. When the drop is free of the nozzle there are no longer 
any external forces acting on the drop, and thus the pressure q must be in 
equilibrium. This condition is automatically satisfied by the boundary conditions 
imposed since the surface tension forces are self-equilibrated. The integration at the 
trailing edge of the drop simply determines when a node should be discarded from 
the end. The trailing end is actually simpler to deal with than the leading edge 
because the process of discarding nodes is easier than smoothly introducing new 
nodes. 

We want to consider the initial conditions for single drop ejection but we cannot 
start our calculation with a flat meniscus across the nozzle since such a shape can- 
not be described by our l-dimensional equations. Therefore we begin with a 
hemispherical drop protruding from the nozzle that is moving with a prescribed 
uniform velocity. This required initial velocity is obtained from a calculation involv- 
ing the nozzle region, that is given in Section V. 

IV. NUMERICAL SOLUTION OF SET (III): SCHTME B 

In order to observe the effects of radial inertia, we need also to develop a. 
numerical scheme for solving Set (III), which does not include radial inertia. I7nes.e 
equations are the simplest of the three sets discussed here, and they are easily 
integrated. The same numerical scheme as described above is used, but now there is 
no pressure equation to solve. The change of variables introduced in Eq. (3.1) is not 
needed to produce a stable scheme. The boundary conditions are identical to those 
used for Set (II) and so are the methods for the integrations of the end velocities. 
The initial conditions are also the same. 

Equations (2.2) and (2.9) can be written in the form of Eq. (3.8) as 

r[ = -f-=1) - rrzJ2. 

and 

(4.i’) 

The predictor-corrector method in Eq. (3.10) is applied directly to these equations 
using the tinite differences given in Eqs. (3.1 I) and (3.12). 

V. NOZZLE REGION CALCULATION, VISCOUS EFFECTS RETAINED 

The calculations of the acoustic waves in the ink-jet fluid chamber [ 1 ] give the 
pressure history at the inner end of the nozzle. Our numerical schemes require a 
velocity boundary condition at the nozzle exit, so we must relate the velocity at the 
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outer end of the nozzle to the driving pressure at the inner end. This task is not as 
ditficult as it first appears since the outer free surface flow equations are l-dimen- 
sional. This means that the variation of ~7 with r in the nozzle calculation does not 
enter into the boundary conditions for the outer flow. The axial velocity varies with 
Y in the nozzle region to satisfy the no-slip condition at the nozzle walls, however, 
only the average value of the axial velocity from the nozzle calculation will be used 
in the boundary conditions for the outer flow. Since the no-slip condition is being 
satislied, it means that the viscous effects in the nozzle region are being considered, 
but it will be shown that the time scale of the problem is such that inertial effects 
dominate the flow even in this region. 

Since only the average velocity, or the volume flow rate through the nozzle, is 
needed it is not necessary to solve the nozzle problem in detail. By applying a 
momentum integral. using the nozzle region as a control volume, it is possible to 
derive an ordinary differential equation in time for the volume flow rate Q7 with a 
forcing term that depends on the pressure history,at the inner end of the nozzle. 
This derivation involves several assumptions: (1) The velocity profile has an 
assumed shape in the r direction that satisfies the no-slip and symmetry conditions. 
(2) The flow is assumed to be incompressible. i.e., Q is a function of time only. (3) 
The entrained flow is assumed to come from such a large region that no work is 
done to accelerate the fluid into the nozzle. (4) The outer flow produces a back 
pressure that is so much smaller than the driving pressure it can be ignored. (5) The 
fluid is Newtonian. (6) The fluid always completely fills the nozzle region. The last 
assumption is not valid for all times, but the drop breaks off before it is violated to 
a great degree. 

We will omit the derivation of the ordinary differential equation and simply state 
the result, 

5.784 
“+ bR 

- Q = r2b2P( tj,‘L. (5.1) 

The numerical constant is a shape parameter from the integration in r across the 
flow and is characteristic of the assumed profile. This equation has been nondimen- 
sionalized to agree with the free surface flow variables calculated in Eq. (2.1). Thus 
the parameter R is the Reynolds number for the flow based on the nozzle exit 
radius and the same reference velocity as in the free surface flow. The nozzle was 
assumed to be conical in shape with length L along the axis and with an inner end 
radius of b. In these dimensionless units the outer end radius is one, thus b set equal 
to one would correspond to the cylindrical nozzle modelled by Fromm [2]. The 
driving pressure history at the inner end of the nozzle is denoted by P(tj and is 
assumed to be known. 

We are interested in results similar to those presented by Fromm [2], so we use 
the same pressure history, Fig. 1. It should be pointed out that Fromm uses dif- 
ferent nondimensional variables from those in Eq. (3.1) and hence his driving 
pressure must be divided by rc times the Weber number in order to be in agreement 
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FG. 1. Results from the nozzle region calculation, the solid hne is the nozzle exit velocity. the 
dashed line is the step pressure history. The circle marks the initial conditions for the free surface 
calculations. The parameters are as in Table II. 

with ours. This pressure history is a simple step profile. Since Eq. (5.1 j is a first- 
order linear ordinary differential equation, it can always be easily integrated. The 
result can be expressed in terms of elementary functions for step pressure histories 
and is given by 

TABLE 1 

The Typical Values of Some Physical Parameters That 
Characterize Ink-Jet Printing 

- 

Fluid Ethylene glycol Alcohol 

Density (g/cm3) 1.02 0.90 
Surface tension (g/sl) 60.0 200 
Viscosity fg/(sm)) 3.0 1.5 

Ofher paratnerers 

biozzle diameter, a 5.OE-5m 
Reference velocity, v0 1 .O m/s 
Reference time, a/ Vu 5.OE-5s 
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where the times tl, t2, and t3 are the times when the steps occur in the pressure 
history. The time constants of the decay are so small that the results shown in 
Fig. 1, using the values of the parameters in Table I, appear to be almost linear at 
small times. This is due to the dominance of the inertial effects in the nozzle region, 
as mentioned above. 

The initial conditions used for the nozzle calculation are: at t = 0 there is no fluid 
volume outside of the nozzle and the velocities are everywhere zero. As stated 
above, the calculations of the drop shapes cannot be started until a hemispherical 
drop is extruded from the nozzle. If it is assumed that up to this time all the fluid 
external to the nozzle moves with the same velocity (the exit velocity), the initial 
velocity for the free surface flow can be taken as the exit velocity at the time when 
the expelled volume reaches 2743, the volume of a hemisphere of radius 1. The time 
at which this occurs (t = 0.5) is shown by the circle on the velocity curve in Fig. 1. 
We also expect that the velocities calculated for the exit of the nozzle up to this 
point will very nearly be the velocity of the tip of the drop and hence should agree 
with Fromm’s results. This is indeed the case (see [2, Fig. 61 j. 

VI. NUMERICAL RESULTS 

Only those results of interest to the design of a DOD ink-jet device will be 
presented here. The quantities of interest are the final drop velocity and volume, the 
drop shape and satellite formation. The linal drop volume depends strongly on the 
timing of the pressure steps inside the fluid cavity (Fig. 1) and since we are using a 
simplified pressure history, it cannot be discussed in detail here. The final drop 
velocity also depends on the pressure history, but it can be compared to the peak 
nozzle velocity to give it quantitative meaning. The drop velocity history also 
exhibits some interesting behavior that gives us insight into the validity of the 
l-dimensional models employed. 

The values of the parameters used in our numerical study are given in Tables I 
and II. The same space step is used for both Sets (I’) and (II) and the difference in 
the time step is due to the differing stability of the two schemes, which will be dis- 
cussed later. We will consider three Weber numbers with all other parameters held 
constant. The initial time, to, in Table II is the time interval from the start of the 
pressure pulse to that time when the free surface calculations can begin. The three 
pressure step times, rr, t2, and t3, correspond to the times at which the pressure 
history steps occur (see Fig. 1). 

In order to check the two schemes, a variable radial inertia parameter was 
introduce into Scheme A. This was accomplished by multiplying the left-hand side 
of Eq. (2.5) by a constant m, and then carrying it through the derivation of 
Scheme A. This constant represents the fraction of radial inertia retained in the 
scheme, a value of 1 retains the full radial inertia, while the results for UZ=O 
includes no radial inertia and should agree with those of Scheme B. Since m =0 
produces a singular problem using the formulation of Scheme A we must use very 
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TABLE If 

The Values of Various Nondimensional Parameters That Enter into the Numerical Calculations 

Scheme A B 

Time step, r& 
Space step, dz 
Weber number, B’ 
Revnofds number, R 
I&al time, r0 

Drivmg pressures: 

PI 
p2 
p; 

Pressure step times: 

f2 

i3 

Nozzle inlet radius, b 
Nozzle length, L 

0.002 o.ooi 
0.05 

1.0~5.0!20.0 
2.5 

0.5 (0.1) 

-40.0 ( - 60.0 J 

40.0 ( 80.0) 
-40.0 ( - 60.0 ) 

0.1 (0.2J 
0.1 (0.8) 
1.2 ( 1.4) 

1.0 
2.0 (5.0) 

1Vdm. The parameters in parentheses are those used by Adams and RG~, Ref. [2]. 

small non-zero values, such as m = 0.001, for our comparison. This comparison is 
presented in Figs. 2 and 3 at a Weber number of 5.0. Figure 2 shows the effect on. 
the break off time of the parameter nr. As fn is decreased the drop profiles appr0ac.h 
the profile calculated by Scheme B. This is especially noticeable at the front end of 
the drop, which shows reverse curvature for m ~0.1. Figure 3 shows the con- 
tinuation of three of the calculations in Fig. 2 to r = 1.50. ft must be remembered 
that the two schemes are formulated quite differently, leading to the differences 

0 5.5 

FIG. 2. A comparison of the drop protiles at break off from Scheme A with values of the parameter 
m = 1.0. 0.1, O.OOl (solid, single dash, double dash) at times 1.14. t.18, and 1.24 respectively and the drop 
protile from Scheme B (triple dash) at time 1.34 with B’= 5.0. 
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0 E.5 

2 

FIG. 3. Continuation of the calculation shown in Fig. 2 for WI = 1.0, 0.001 (solid, single dashed j and 
Scheme B (double dashed) to f = 1.50. 

observed in Figs. 2 and 3, however the changes as ~71 is decreased are in the direc- 
tion of the results from Scheme B, reassuring us that the two schemes agree 
reasonably well. It is worthwhile to note that the stability of Scheme A with 
m = 0.001 is such that it is much better to use Scheme B to model the jet without 
radial inertia. 

All the calculations were executed on an IBM 3081 mainframe computer with 
code written in FORTRAN. The average time to complete a drop calculation to the 
breakup point was about 30 CPU s. Figure 4 shows the drop proliles for three dif- 
ferent times as calculated with Scheme A at W= 1.0. The result at the latest time 
shows the shape just prior to satellite detachment. The results for the same 
parameters with Scheme B are shown in Fig. 5. The satellite formation is similar, 
however the linal drop size appears to be slightly greater using Scheme B. The dif- 
ferences in the shape of the drops at r = 1.25 can best be explained by looking at the 
front end velocity histories given in Fig. 6. The tip velocity in Scheme B has a 
minimum at approximately t = 1.10 and then a velocity wave reaches the front of 

2 

FIG. 4. Drop profiles at times 1.0, 1.25, and 1.5, for W= 1.0 using Scheme A. 
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FIG. 5. Drop profiles as in Fig. 4 using Scheme B. 

, 
TIME 

FIG. 6. The average velocity of the end of the drops shown in Fig. 4 (solid line) and Fig. 5 (single 
dashed line) vs time. as well as the nozzle exit velocity (triple dashed line). The x’s are at Ihe times 
corresponding to the protiles in Figs. 4 and 5. The circle corresponds to the circle in Fig. 1. 

FIG. 7. As in Fig. 4 with W= 5.3, Scheme A. 
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FIG. 8. As in Fig. 5 with W= 5.0, Scheme B. 

2 

FIG, 9. The continuation of the calculations in Figs. 7 and 8 at time 1.75, Scheme A is the solid line 
and Scheme B is the dashed line. 

1.75 

TIME 

FIG. IO. As in Fig. 6 with W’= 5.0. 
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FIG. I I. As in Fig. 4 with H’= 20.0. Scheme A 

the drop at about l= 1.25, which corresponds to the time for the middle drop 
profile in Fig. 5. Thus, we see that the steep front of this drop is due to a velocity 
wave having reached the front of the drop. The reason Scheme B differs from 
Scheme A is that the inclusion of radial inertia in the latter makes it possible to 
more correctly predict the wave motion in the jet. Without radial inertia oscillations 
that involve the exchange of kinetic energy between radial and axial modes cannot 
be predicted. We will see that this difference is even larger at higher Weber num- 
bers, since inertia effects play a large role when the surface tension is relatively 
reduced. The oscillations of the main drop can be seen in the tip velocity from 
Scheme A3 in Fig. 6. The smooth sinusoidal ripples at times greater than 1 .I0 arc 
characteristic of such motions. 

As the Weber number is increased the differences between the two schemes 
become more pronounced in Figs. 7-14. The drop shape is smoother with Scheme A 
and the oscillations of the front end of the drop can still be observed in the end 
velocity histories, Figs. 10 and 14. However, Scheme B predicts a continuous drop 

FIG, 12. The continuation of the calculation in Fig. 11 at time 1.84, when the main drop detaches 
from the trailing satellites. 
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FIG. 13. As an Fig. 5 with W=20.0, Scheme B, except the third drop shown is at break up at time 
1.4. 

TIME 

FIG. 14. As in Fig. 6 with W=20.0, 

1.75 

T------- 

0 8 

Z 

FIG. 15. Drop protiles at times 1.03, 1.64, 2.05, and 2.25, calculated using Scheme B and the pressure 
history given in Fig. 16, at W’= 1.0. 
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TABLE III 

The Time at Which the Drop Becomes Detached from the Nozzle for All of the Cases Considered 

Scheme A. B 

lV= 1.0 1.20 t.30 (1.62) 
lv= 5.0 1.14 1.34 
w = 20.0 1.12 1.31 

Scheme A m=O.l m = 0.00 1 

lV= 5.0 1.18 i.24 

1Voie. The value in parentheses was obtained using the parameters used by Adams and Roy. Ref. 

IIll 

only until the velocity wave reaches the front of the drop. As the surface tension is 
reduced, i.e., as the Weber number is increased. the velocity wave distorts the front 
of the drop, calculated by Scheme B, to a greater degree, until at LV= 20.0 it causes 
eariy satellite detachment. For a Weber number of 5.0 the drops from both schemes 
at f = 1.75 are shown in Fig. 9 just prior to the main drop detaching from the trail- 
ing satellite in Scheme A. Figs. 11 and 13 show the drop profiles for if’= 20.0 as 
computed by Scheme A and Scheme B, respectively. Scheme B predicts sateliite 
separation at t = 1.40 while this separation does not occur in Scheme A until 
t = 1.84 as shown in Fig. 12. The front end velocities for E’= 20.0 are shown n-r 
Figs 14. The times at which the drops become detached from the nozzle for ah the 
cases are given in Table III. 

0 Ll 

TIME 

FIG. 16. The pressure history used by Adams and Roy [2], and the correspondmg nozzle exil 
velocity calculated using Eq. 5.2. 
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, I 
OE 

SPACE STEP 

FIG. 17. An example of the largest time step usable at a given space step for both of the numerical 
schemes. Scheme A has the circles at the data points and Scheme B has the x’s These results are for a 
MY= 5.0, but apply at least over the range of values discussed here, i.e., 1.0 to 20.0. 

To compare the results obtained with Scheme B, which is an Eulerian for- 
mulation, to those obtained by Adams and Roy [2], using a Lagrangian for- 
mulation, we have repeated the calculations for W= 1.0 using the parameters given 
in Table II in parentheses. The pressure history is exactly that used by Adams and 
Roy, however the nozzle exit velocity is obtained from our calculation, given in Sec- 
tion IV, and may not exactly match that used by Adams and Roy. The drop profiles 
are shown in Fig. 15, with the driving velocity calculated using Eq. (5.2) shown in 
Fig. 16 along with the pressure history. The drop profiles show a teardrop shape 
similar to that found by Adams and Roy, but break off from the nozzle occurs 
sooner, giving a smaller drop with a shorter tail. 

In order to establish the correct time step to use for a given space step for the 
two schemes, several trial calculations where made using various space steps. These 
results for W= 5.0 are given in Fig. 17, which shows the largest stable time step for 
a given space step. The marked points correspond to the cases examined. Time 
steps smaller than those shown give similar results, however, they entail a propor- 
tionally longer computation time. These results are valid at least over the range of 
Weber numbers presented here, i.e., 1.0 to 20.0. 

VII. CONCLUSIONS 

The comparison of the two l-dimensional models represented by Set (I) and Set 
(II) shows that each model has some advantages. Scheme A, while being more dif- 
ficult to solve numerically, produces better results at higher Weber numbers where 
inertia effects dominate. If it is desired to model the oscillations of a single drop it is 
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certainly necessary to use Scheme A, since Scheme B neglects radial mertia which is 
crucial to the description of this phenomenon. The advantage to Scheme B, other 
.than its simplicity? is that at low Weber numbers it gives a cleaner break off profile. 
This is probably due to the omission in it of the higher order terms which appear m 
Scheme A. The cost of computation is approximately the same for both schemes, 
because Scheme B requires a slightly smaller time step while Scheme A requires 
mere computation per time step. Computations using these schemes are two orders 
of magnitude less expensive than those using a 3-dimensional approach, and they 
give similar results Although the f-dimensional equations cannot predict some 
aspects of the actual fluid flow? they do model many of the important features. It 
will only be by comparison with experiment that the real validity of either method 
will be demonstrated. 

In the future these computational schemes will be combined with the nozzle 
pressure history that results from modelling the DOD transducer. The theoretical 
pressure history derived for the geometry of a particular transducer design used m 
our laboratory will be used in the schemes given here, and the results can then be 
compared with experiments. It is expected that the simulation developed should be 
useful for transducer/nozzle design purposes. A supplementary report [IO], that 
contains the FORTRAN program listings and a guide to their use has also been 
writ-ten. 
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